Fibroblast growth factor 21 regulates glucose metabolism in part by reducing renal glucose reabsorption
نویسندگان
چکیده
منابع مشابه
Insulin-like growth factor 1 regulates developing brain glucose metabolism.
The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-(14)C]glucose uptake parallels Igf1 expression in wild-type mice and is profou...
متن کاملFibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway.
Fibroblast growth factor 21 (FGF21) has been identified as a potent metabolic regulator. Administration of recombinant FGF21 protein to rodents and rhesus monkeys with diet-induced or genetic obesity and diabetes exerts strong antihyperglycemic and triglyceride-lowering effects and reduction of body weight. Despite the importance of FGF21 in the regulation of glucose, lipid, and energy homeosta...
متن کاملRegulation of renal tubular glucose reabsorption by Akt2/PKBβ.
Akt/PKB is known to regulate the facilitative glucose carrier GLUT4. Nothing is known, however, of the role of Akt/PKB in the regulation of renal epithelial transport. To explore whether Akt2/PKBβ influences the Na(+)-coupled glucose cotransporter SGLT1, human SGLT1 was expressed in Xenopus laevis oocytes with or without Akt/PKB, and electrogenic glucose transport was determined by dual-electro...
متن کاملMolecular determinants of renal glucose reabsorption. Focus on "Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2".
ABOUT 180 g of glucose are filtered daily in the glomeruli of the kidneys in a healthy normoglycemic subject, which is equivalent to approximately one third of the total energy consumed by the human body in a day. Most of the glucose entering the tubular system is reabsorbed along the nephron segments, primarily in the proximal tubule, such that urine is almost free of glucose. This is differen...
متن کاملMicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23
Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedicine & Pharmacotherapy
سال: 2018
ISSN: 0753-3322
DOI: 10.1016/j.biopha.2018.09.078